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On the existence of Weisskopf-Wigner type theories 

E Grimm and V Ernst 
Sektion Physik der Universitat Miinchen, Theresienstrasse 37, 8000 Miinchen 2, West 
Germany 

Received 27 March 1974 

Abstract. I t  is shown that certain features of the Weisskopf-Wigner theory of natural line 
width can be generalized for the construction of a systematic, mathematically and logically 
autonomous approximation scheme for treating the interaction of a bound electron with 
photons. This scheme is equipped with its own hierarchy of orders which are not ruled by 
powers of the coupling constant. Under very weak conditions on the bound electron all 
Weisskopf-Wigner theories of finite order exist as ordinary quantum theories on ordinary 
Hilbert spaces 2, and have strictly unitary time evolution operators U,(r), t < m. This 
implies in particular that in such theories the interaction of any finite number of states of 
the Dirac hydrogen atom with any bounded number of photons can never lead to diver- 
gencies. If an infrared catastrophe is banned by a small photon mass p > 0, Weisskopf- 
Wigner type theories of the interaction of an ‘m-level atom’, m < m, with any unbounded 
number of photons also exist and have strictly unitary time evolution operators. Some 
examples of novel applications of Weisskopf-Wigner type theories are given. 

1. Introduction and discussion of results 

The first successful attempt to obtain finite widths for emission lines of atoms was 
made by Weisskopf and Wigner (1930). Later it was believed (Low 1952, Kallen 1958) 
that this theory leads to divergent line shifts related to the Lamb shift and this view 
has since been frequently stated (eg Ackerhalt et al 1973b, Louise11 1973). Conse- 
quently, a number of alternatives (Low 1952, Heitler and co-workers, in essence collected 
in Heitler 1954) have been worked out, based on perturbation theory with the removal 
of divergencies by renormalization techniques. We want to rehabilitate the original 
work of Weisskopf and Wigner by showing : 

(i) Its ‘basic idea’, the ‘important state hypothesis’ (Kallen 1958, Ernst and Stehle 
1969), can be extended to a systematic, mathematically autonomous and self-reliant 
approximation scheme for the treatment of bound electrons with photons. This scheme, 
here called the Weisskopf-Wigner approximation (WWa), is equipped with its own 
hierarchy of orders which are nor defined by powers of the coupling constant, but 
characterized by the property that the time evolution from t = 0 to any time t < 30 in 
any (existing) WWa ‘order’ is described by a strictly unitary operator U,(r). The WWa 
is not restricted to the spontaneous emission processes which have mostly been treated 
up to now; it can also be used for cases with arbitrary numbers of incident photons which 

1664 



On the existence of Weisskopf- Wigner type theories 1665 

can and must be described by finite, properly moving and spreading wavepackets. The 
‘lowest’ (non-trivial) order of our WWa comprises the original Weisskopf-Wigner 
theory of spontaneous emission with a theory of resonance fluorescence with one 
incident photon. 

(ii) To establish the-we believe, physically and mathematically most appealing- 
idea of the WWa we prove that any ‘finite order’ WWa exists under conditions which 
are always met when the atom is the Dirac hydrogen atom. This implies that WW 
type theories treating the interaction of any ‘m-level atom’, m < CO, with any bounded 
number of photons will never lead to any infinities if the atomic eigenstates share certain 
properties, in essence the finite spatial extension, with the Dirac hydrogen atom. 

(iii) If an ‘infrared catastrophe’ is banned by a small photon mass p > 0, the WW 
treatment of the interaction of any ‘m-level atom’, m -= 00, with any unbounded number 
of photons likewise will never lead to divergencies. Essential divergencies occur in 
WW theories, if at all, only by the inclusion of an infinite number of atomic states. 

(iv) The existence of WWa does not affect the necessity of renormalization; it 
offers a chance for a novel, maybe more satisfying, form of it. We show, by an example 
( Q  5) ,  how, in a certain Weisskopf-Wigner theory with an unbounded photon number, 
a ‘bare’, bound electron can ‘dress’ itself with bound( !), transverse( !) photons, thereby 
changing its ‘state’ as well as its eigen-energy. Since such dressing processes involve an 
unbounded number of photons, they could not be obtained in any finite order of 
perturbation theory. 

(v) The use of the dipole (or similar) approximation(s) is strictly forbidden in 
Weisskopf-Wigner theories. We note without proof that the dipole approximation 
leaves calculated lifetimes practically untouched, but makes the line shifts, as given 
eg by KallCn (19x9, divergent, and the whole theory mathematically non-existent. 
Dangers arising from the dipole approximation have been noted earlier (Sauermann 
1965, Ackerhalt et a1 1973a, Moses 1973); its use is equivalent to the assumption of a 
‘pointlike’ atom. 

(vi) We note without proof: within finite order WW theories one may use 
perturbation expansions, but one must sum them up; otherwise the results in general 
will ‘violate unitarity’ by arbitrary amounts. In existing WW theories of infinite order 
the use of perturbation expansions is not, in general, allowed. 

(vii) Weisskopf-Wigner theories owe their existence to a certain ‘smoothness’ and 
the finite spatial extension of atomic eigenstates and the inclusion of only a finite number 
of them. This means that the electron cannot propagate signals as required by strict 
causality. Signal propagation by photons is treated correctly in WW theories. In 
realistic cases the omitted electron retardation effects wash out strict causality by about 
10- l9 s. 

(viii) We add, also without proof, that our existence theorems can be extended 
easily to all cases where M < CO non-overlapping ‘m-level atoms’ (m < 00) interact 
with any number of photons. We thus obtain a wide base for various problems in 
modern ‘super-radiance’ and laser theory. 

We demonstrate the principles of the WWa by the interaction of a Dirac one-electron 
atom with the transverse, quantized part of the electromagnetic field. In Q 2 the cor- 
responding equations of motion are ‘derived’, formally, from the usual non-existing 
operator expressions. The ‘idea’ of the WWa is described in Q 3 ; there we also prove 
the existence of all finite order WWa. WW theories of infinite orders are treated in Q 4 
and in Q 5 ,  to illustrate the great flexibility of the WWa, we collect some interesting 
examples of WWa. Most of them have not been considered previously, to our knowledge. 
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2. Equations of motion for the interaction of a bound electron with the transverse 
electromagnetic field 

To connect our work with the physical literature we first ‘derive’ the equations of 
motion in the usual formal way, thus introducing at least some necessary notation. 

We consider a one-electron atom A ,  described by the Dirac equation for some 
given, stationary potential V(x) .  Let U,@) denote the normalized ‘electron’ eigen- 
solutions to energy E, > 0. The index a E Q A  comprises the quantum numbers which 
completely specify such an eigenstate; Q A  denotes the set of all these indices. By a 
suitable change of V ( x )  at large distances we make the spectrum Ea discrete. This is 
inessential because in general we shall consider only finite sets of atomic states U,@) 
which without loss can be identified with proper eigenstates. We subject this Dirac 
atom A to a process of second quantization by introducing for the electron field $(x) 
in the Schrodinger picture the operator 

b, ‘annihilates an electron in the state u,(x)’ and satisfies with the corresponding creation 
operator bf, the usual Fermi anticommutation relations [b,, b;,]+ = 6,,) etc. $(x) ‘acts’ 
on the fermion Fock spaceFA of the states 

m 

The a a l - ” p  are antisymmetric c-number functions of the discrete variables a, ,  . . . , a,, 
and are subject to the usual normalization conditions. lu,) is the electron vacuum, 
defined by b,lu,) = 0 for all a and (u, lu, )  = 1. 

Since the scalar part of the Maxwell field has been already introduced as the 
c-number V ( x )  and its longitudinal part is fixed by Coulomb gauge, we consequently 
quantize only its transverse part, the ‘radiation field’ R. The transverse part of the 
vector potential thus is given as the (Schrodinger) field operator 

where K = (k ,  A) comprises the continuous wavevector k and the discrete polarization 
indices A = 1,2 and J d 3 ~ .  . . means integration over k and summation over A. ~ ( k ,  A) 
for A = 1,2 denotes two mutually orthogonal unit polarization vectors satisfying 
r(k, i ) k  = 0. aK and a! are the usual Bose annihilation and creation operators. o ( k )  is 
defined as ( p 2 + k 2 ) 1 1 2  where p 2 0 is a fictitious photon mass, introduced only to 
‘control’ certain infrared problems. A ( x )  and all operators referring to R are formally 
defined on the space FR of states of the form 

m 

a,lu,> + 1 -$ j d 3 r 1  . . . J-d3K,,a,,(K1,. . . , Kn)a~I . . . a:.~ up>. (4) 
n = l  J n .  

Iu,)  is the photon vacuum satisfying aKlu,) = 0, (uplup) = 1, u0 is some c-number and 
the a , , (~ , ,  . . . , K,,) are Lebesgue square integrable c-number functions which are 
symmetric in the photon arguments ( K ~ ,  . . . , K,,). The scalar product (ala’) on FR is 
formally defined by applying the commutation relations in the usual way. 

We couple A and R by assuming that the state space of the coupled system A + R 
shall be the direct product FA Q FR of the spaces FA and FR, and that the coupling 
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hamiltonian density shall be the usual eA(x)ll/+(x)all/(x), where U is the Dirac vector. 
The total hamiltonian of A + R thus shall be given by 

H = d3~w(k)aLa, + 1 E,bLb, + e d3xA(x)ll/t(x)all/(x), ( 5 )  I s 
to be understood as an operator on FA Q FR. 

Equation ( 1 )  implies an extended important state hypothesis, namely the assumption 
that creation of electron-positron pairs plays no role in the theory to be constructed : 
we see that H commutes with the electron number operator ZaEPAbfib,, and so the 
number of electrons remains unchanged. This means that the time evolution of the 
system, if it exists, leaves the ‘sections’ &’: Q FR of FA Q FR invariant, 2 5  being the 
p-electron subspace of FA. Therefore we lose nothing that has not been already lost 
by ( 1 )  if we consider only one electron, ie if we consider H only on the section 
9’ := Xf4 Q FR of FA Q FR. The considered states la) E Y of A+R thus are the 
vectors of the form 

[ a )  = 
“ 1  1 - d3K1.. . [d3K,,?:(K1,. . . , K, , )aL,  . . . aLnb$v,)lu,). (6) 

oeQA n = O  J n !  J 
The (one-electron) states of A+R at different times t form a curve Ia(t)) in 9, 

determined by the Schrodinger equation 

and some initial condition at t = 0, say Ia(0)) = I x )  E 9’. Equation (7) of course means 
a set of coupled equations of motion for the components a:(t) : = a : ( K l , .  . . , K , ;  t )  of 
I&)). A somewhat tedious calculation shows that, with the atomic transition elements 

these purely c-number equations read explicitly : 

These Schrodinger equations have to be solved simultaneously for all possible pairs 
(a, n)E Q A  x No = : Z9(No = (0, 1 , 2 , .  . .}) under the initial conditions 

(10) 
the x“. being the components of any I x )  E 9. 

We prefer the Schrodinger picture to the Heisenberg picture because instead of 
nonlinear operator equations of motion on FA Q FR here we have to solve only linear 
c number equations which in favourable situations can even be restricted to some 

@%cl,.  . . , K , ; O )  = X X K ~ ,  . . . , K,), 
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subspace, eg 9, of FA 0 FR. In addition we may conceive approximations in de- 
pendence on the interesting initial state 11) and so even go into suitable subspaces of 9 
All this is not possible in the Heisenberg picture because Heisenberg operators have 
the Schrodinger operators on FA 0 FR as initial values and so, in principle, solutions 
must hold on the whole state space FA 0 FR. 

The existence of solutions of (8) and (9), of course, depends on the integral kernels 
M*(a, b; K).  To get an idea of them we derive their decisive property. Since all u,(x) 
are square integrable, uL(x)au,(x) is absolutely integrable so that J(w(k))M(a, b ; IC) is a 
uniformly continuous and thus bounded function of k which vanishes for large Ikl. 
If A is the Dirac hydrogen atom, the components of the spinor u,(x) (see eg Rose 1961) 
consist of a finite sum of terms of the form 

L 

C X , , ( ~ ,  cp)rY- ' e-" ciri (1 1) 
i = O  

where C, i > 0, y, L, ci are finite constants depending on a, ( r ,  9, cp) are the spherical 
coordinates of x, and Y,,,(9, cp) is a spherical harmonic. In particular, for any a, y > 0 
satisfies an inequality 

(12) 

Therefore, ui(x)au,(x) for any a, b E Q A  will be even square integrable, and so the same 
holds for its Fourier transform (w(k))'"M(a, b; K).  But if (w(k))"ZM(a, b;  K )  is bounded 
at k = 0 and square integrable, M(a, b ; K )  will also be square integrable, even for p = 0 : 

y2  2 1 -(137,. . .)-'. 

M(a,  b; K )  E Y2(R3 x { 1,2}) foranya ,bEQA.  (13) 

This is the only property we shall need here. 
We have checked relation (13) by a direct evaluation of the M(a, b; K )  for all a, b of 

the Dirac hydrogen atom; we have found that for Ikl -, CO they fall off faster than 
required for square integrability. Similar calculations have also been done recently 
(Moses 1973) for the non-relativistic hydrogen atom. 

3. The general idea of the Weisskopf-Wigner approximation (WWa) and the existence 
of finite order Weisskopf-Wigner theories 

The formal solution la(t)) = e-iHtlx) of (7) in practice does not help much, even if it 
should exist. We consider the WWa as a prospective method to 'derive information' 
from the equations of motion, maybe even to define, in a weaker sense than by the 
existence of the operator e-iHt, the solution of (7). 

For this purpose we must first introduce some mathematical terminology. Let 
&': denote the Hilbert space of the elements a: = c ~ : ( K ~ ,  . . . , K ~ ) ,  as introduced in $2, 
the scalar product on &': being defined by 

( a : l a ~ )  = s d 3 c 1 . .  . 1d3~ , , a .*" (~ , ,  . . . , K,)a:(ic1,. . . , K J  (14) 

The sector Y can be understood as the orthogonal sum 
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with scalar product 

(ala‘) = C (a;la:). 
( a , n ) c l y  

For any finite or infinite subset of I of I ,  = Q A  x No we define the Hilbert space 

XI:= @ x;, 2qr c 9; 
(a .nNI 
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(16) 

its elements lar) consist of the sequence {a; ,  (a, n) E I }  and the scalar product is given by 

The norm (arlt1r)1’2 > 0 of a vector lar) will be denoted by )I Iar)il and lar) €2, implies, 
as usual, 1 1  lar)ll < CO. 

The WW recipe for the construction of approximate solutions of (9), (10) consists 
of a simplification procedure Red(I) and a procedure Sum(I) which step by step ‘corrects’ 
the simplifications introduced by Red(I) and thus in a sense ‘sums up’ the WW 
‘expansion’. 

Red(I) reads : ‘(i) Choose some I so that Ix) E %I. It is obvious that any practically 
realizable initial condition Ix’) can be approximated with any desired accuracy by a 
Ix) which lies in one of the spaces S I .  (ii) On the right-hand side of (9) put a:* l(t) = 0 
whenever (b, n k 1) # I ,  and a;((t) 0, whenever (a, n) # I .  (iii) Ignore all equations (9) 
where on the left-hand side stands an (a, n) 4 I.’ The remaining ‘reduced’ equations of 
motion thus read 

= ( o ( k , ) +  . . . + o ( k ” ) + E a ) a ; ( K 1 , .  . . , K , ;  t )  

+ 1 J ( n +  l ) 1 d 3 ~ M * ( a .  b ;  K ) U : + , ( K ,  K ~ ,  . . . , K,; t )  
( b , n +  1 )  € 1  

a ; ( ~ 1  > .  ‘ 9 K n ;  0)  = x ; ( K ~  7 . . . y  K n )  

and are to be solved simultaneously for all (a, n) E I .  Since on both sides appear only 
components of I@,(t)), by Red(I) we have reduced the ‘exact’ equations (9) for a curve 
la@)) in Y to a system of equations for the components of Icr,(t)) E c Y .  Equation 
(19) thus can be written in the form 

with H: defined as the multiplication operator ai -, (o(kl)+ . . . +o(k , )+Ea)ai  and 
H I  as the integral and symmetrization operator given by the last two terms of (19). 

Now let I be finite. Using the definition of Red(I) it is easily verified that (a,lH;a,) 
is real for any lar) E XI with l(ctrlHIaI)l CO ; so H i  is symmetric (or ‘hermitean’ in the 
physical nomenclature) on 2 1 .  Actually, if all M(a, b ;  K )  occurring in (19) satisfy con- 
dition (13) we find ~ ~ H ~ ~ ~ ~ ) ~ ~  < 00 for any lar)  E XI. So H i  is defined everywhere on X; 
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and thus, by the Hellinger-Toeplitz theorem, it is bounded and self-adjoint (this actually 
is the mathematical point of the WWa). Since the multiplication operator Hy is also a 
densely defined and self-adjoint, but not bounded, operator, the total hamiltonian HI 

is also self-adjoint (eg Kat0 1966, pp 190 and 278) on 2 1 .  It follows then by well 
established theorems of functional analysis (eg Kat0 1966, p 483) that (for t < CO only!) 
there exists on Xr a strictly unitary time evolution operator 

(21) Ur(t) = exp( - iHrt) .  

This means in particular that with square integrable atomic transition elements 
M(a, b ;  K) the Schrodinger equation (20) on can always be solved uniquely (Kato 
1966, p 481) with finite expressions for Iar(t)). If I x )  is not from the domain of H: this 
solution of course must be constructed from ‘neighbour solutions’ in 2 1  by continuation 
by continuity. We emphasize that all this remains true for p = 0 as all the involved 
M(a, b ;  IC) still satisfy (13). 

When I is infinite, the existence of solutions of (19) cannot be proven so easily. A 
special case will be considered in fj 4. 

We now consider the convergence of the WWa, and its summation process Sum(I). 
Let I = I, c I, c I, c . . . be any sequence of subsets of I ,  which tends to I , ,  ie 
which has the property that for any given (a, n) we can find a number r ,  = ro(a, n) such 
that (a, n) E I ,  for r 2 r o e  The corresponding sequence of Hilbert spaces 

2 1 ,  c XI, c . . . 
then in a sense tends to 9’. Let us assume that the Schrodinger theories on Xr,, Xr , ,  . . . 
exist, as is the case with finite I , ,  I , ,  . . . . We then get a sequence 

Ur,(t)l X >  9 ur ,(t)lx>, . . .  (22) 

of solutions of approximate WW theories; if this sequence converges in 9, and if its 
limit is independent of the chosen I,, I , ,  . . . , it is an excellent candidate for being the 
desired exact solution of (9). Since each element of the WW sequence (22) conserves 
the norm and scalar product, this limit, if it exists, will also conserve the norm and 
scalar product. We could also ask for a limit of the operators 

but this is obviously a much stronger requirement than the convergence of (22), which, 
from the physical point of view, is satisfactory already. Unfortunately not much is 
known about these convergence problems ; some remarks are made in fj 4. 

Finally we introduce some convenient notation. The sequences I c I ,  c . , , , 
X; c X;,  c . . . clearly define a well structured hierarchy of ‘orders’. We therefore say 
that the WWa or WW theory obtained by Red(I,) is of ‘higher order’ than the WW 
theory obtained by Red(I) if I c I , .  If I is finite (infinite), the corresponding WWa 
will be called ‘of finite (infinite) order’. ‘Lowest order’ WW theories thus contain as 
few elements (a, n) as possible. The result of the considerations following (18) can be 
summed up by saying : W W theories offinite order exist if and only if all involved atomic 
transition elements M(a, b ;  K) are square integrable. The boundedness of the interaction 
hamiltonian obviously excludes the occurrence of infinite self-energy effects, but not the 
occurrence of such effects at all, see 9 5. 
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4. On Weisskopf-Wigner theories of infinite order 

The existence of a strong, unitary operator limit of (23) for I , ,  I , ,  . . . -, I ,  were 
practically equivalent to the existence of an exact operator theory on Y. This is un- 
likely to happen, because, despite (l), our interaction hamiltonian density in ( 5 )  is a 
product of three local field operators, as in relativistic quantum electrodynamics. 
But there remains at least some hope for the ‘weaker’ convergence of (22). 

It is interesting, however, to localize these difficulties in the present theory: we show, 
that the inclusion of more and more photons does not lead to essential problems; it 
leads to no problems at all if an infrared catastrophe is banned by an arbitrary small 
photon mass p > 0. Essential divergencies in Weisskopf-Wigner type theories there- 
fore arise solely, if at all, from the inclusion of all atomic states; we get finite results 
if only a finite number of atomic states u,(x) is allowed to interact with an arbitrary 
number of photons with p > 0. Theories of this type are interesting in quantum optics, 
eg for the interaction of an m-level atom with a coherent beam of light, because the 
latter allows no cut-off in the photon number. 

For the above it is sufficient to look at the case in which I consists of all pairs 
(a, n)  E I = Q x No where Q c Q A  is some given, finite set of atomic indices. Then X; 
is the orthogonal sum of a finite number of isomorphic Fock spaces Fa, a E Q, and the 
sums over (b, n ? 1) E I in (19) become sums over b E Q. The resulting WW theory then 
is of infinite order, in the sense of 4 3. Using essentially a theorem of Rellich (eg Kat0 
1966, p 287) we show that for p > 0 the Hamilton operator HI = H y  + Hi is self-adjoint 
on yi“l and thus, as in 4 3 ,  for t < CO generates a unique, unitary time evolution operator 
U,( t )  = exp( - iHrt). The sequences (22) thus remain existent also in infinite order WW 
theories of this type. 

The multiplication operator HY with the dense domain 

-WHIo) = (IEr), IIH,OIar)II < a} 

is self-adjoint on XI. Because of E ,  > 0 and o(k , )+  . . . +w(kn) 2 pn, for p > 0 we 
clearly have 9r (Hy)  c 9, (N)  c 2, and IIHyla,)II 2 pllNla,)li, where N is the photon 
number operator a; + nu; with domain 9,(N) = {la,), IINla,)II < a}. 

We note an inequality which will be needed below. Let ( N +  1)1’2 be the operator 
U: + J (n+ 1)a: with domain 9r ( (N+ 1)1’2) I> 9 r ( N )  I> Qr(Hy). Then for any 

IN,) E Qr(Hr0) 

and to any 6 > 0 there exists a number b‘, namely ab’  e CO satisfying b‘ > max(1, ( 2 6 ) -  l )  

such that 
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llaill denotes the norm of an element ai of X i ,  in accordance with (14). The second 
inequality in (24) then follows from IIH,Ola,) 1 1  2 p / I N ( a r )  1 1 .  

We now look at the interaction hamiltonian Hi. By the triangle and the Schwarz 
inequality we get 

llHilaI)l12 G 2 IIJ(n+1) d3~M*(a,b;~)oc,b+1(~,*,...,*)11 
(a ,n)sI  [bsQ ( 

where m(a, b)  is the Y 2  norm of M(a,  b ;  K). If M(a,  b ;  K) for U,  b E Q is square integrable, 
the first, the annihilation part of Hi, is well defined on 91(N1l2). The creation part of 
Hi is well defined on 9 r ( ( N +  c 91(N1l2) if and only if m(a, b) < cc for a, b E Q. 
This implies that Hi is well defined on the dense set 

9 r ( ( N + 1 ) ’ l 2 )  c g r ( H > )  = {Iar), IIH;IaI)II < a}. 

Further it is easily seen that (arlH;laI) is real so that H; is a symmetric operator on 
X I .  With ll,/na,bll c llJ(n+ l)af:/I and further with the use of the Schwarz inequality 
we obtain for any l a I )  E g r ( ( N  + l ) l I 2 )  : 

By means of (24) we get 

IIHilar)ll G c’IIHFlar)Il + C ~ ’ I I  Iar>ll. (27) 

Choosing Q smaller than pC- ’ ,  because of 9 r ( H i )  2 9, ( (N+ 1)ll2) 2 g r ( N )  3 g r ( H ? )  
we can satisfy the conditions of the theorem of Rellich, so that HI is proved to be 
self-adjoint on Sr. 

P 

5. Physical aspects of the Weisskopf-Wigner idea and some examples of unusual WW 
theories 

The simplification of the ‘exact’ equations (9) to the approximate equations (19), and 
their ‘correction’ by going to the limits (22) or (23), if possible, are the essential ideas of 
the WWa. We emphasize in particular the great flexibility of this idea, characterized by 
the free choice of I ,  which allows its adaptation to various physical problems and permits 
the ‘exploitation’ of other ‘smallnesses’ than the coupling constant, such as energy 
barriers, approximate selection rules, etc. Indeed we frequently face a situation where 
from physical arguments we can hope that the tentative solution of (9) in essence will 
remain in some given Hilbert space X; if initially it was in XI. The important state 
hypothesis of Weisskopf and Wigner is actually such an exploited approximate selection 
rule (see example 2). We give some examples where I is chosen by various arguments. 
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Example 1 ,  

The greatest simplicity is achieved in the lowest order WWa, when I contains only one 
given element (a, n).  Red(Z) then reduces equation (9) to 

with the trivial solution describing n freely moving photons, in no way disturbed by 
the atom. The same trivial behaviour is obtained if I consists of pairs (a,  no + 2v) with 
no fixed and v = 0,1,2,. . . . 

Example 2. 

If I contains two given elements we get non-trivial theories only if their photon numbers 
n differ by one, eg I = ((b, n), (a, n + l ) } .  This choice of I is ‘natural’ in situations where 
one can accept the important state hypothesis of Weisskopf and Wigner : that only two 
atomic states U&), u,(x), say with E,  > E , ,  are ‘important’ for the interaction with 
photons, and that in a transition ub(x) P u,(x) precisely one photon will be emitted or 
absorbed. The corresponding WWa equations of motion read 

d 
dt 

i-a:(Kl, . . . ,  ~ , ; t )  

= (o(k, )+ . . . + w ( k , ) + E , ) a : ( ~ ~ , .  . . , K , ;  t )  

+ , / ( n + l ) f d ’ ~ M * ( a ,  b ; ~ ) c i : + ~ ( ~ , ~ ~ , .  . . , ~ , ; t )  

These equations are well suited eg for the analysis (to be given elsewhere) of directivity 
effects in the ‘stimulated’ emission of a photon under n simultaneously incident photons, 
or in resonance fluorescence with n +  1 simultaneously incident photons. For n = 0 
equations (29) are identical with the Schrodinger form of the original WW equations of 
motion as given by KallCn (1958). As a curiosity we note that the { (b ,  n),  (a,  n+ l),} theory 
remains existent for E ,  < E,; it then leads to problems related with example 3. 

Example 3. 

Weisskopf-Wigner theories can also be used to attack certain self-energy problems of 
bound electrons. If we treat the atom as a ‘one-level atom’, but allow the photon 
number n to assume any value, we get a non-trivial theory with 

I = { (a ,  n),  n = 0, 1 ,2 , ,  . .}, 
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#I = 9" and the WW equations of motion 
. d  
lzaXKII  . . . , K, ; t )  

= (o(k,)+ . . . +w(k,)+Ea)a:(K1,. . . , K,; t )  

+ J(n+1) d 3 K M * ( U , U ; K ) o r ; + , ( K , K l , .  . . ,Kni t )  J 
1 "  + ~ 1 M(a, a ;  K,)a:- 1(K1, * . , K,- 1 ,  K v +  1, * * 9 K, ; t )  

J n V f i  

n = 0 , 1 , 2  , . . . .  

It is easily verified that the stationary, coherent state in 9", 

(31) 
exp( - 46") M(a,  a ; K ~ )  ~ ( a ,  a ; K,) . . .  

Jn! 4 k , )  d k " )  
a:(K1 , . . . , K, ; t )  = exp[ - i(E, - A,)t] ( - 1)" 

with 

is a solution of (30). Aa and 6" are finite for any state u,(x) of the Dirac atom even for 
p = 0;  the example proves that the condition p > 0 of 4 5 is not always necessary for 
the existence of finite results. Equation (31) clearly defines an eigensolution of the 
Schrodinger equation (30) to the eigenvalue E ,  -Aa ; the interaction of the one-level 
atom with the radiation field thus shifts the considered level of the atom and modifies, 
in the sense of Friedrichs (1953), the ground state in 9" which no longer is the ordinary 
vacuum state a: = a,, . In a similar way to the case when the radiation field interacts 
with a given, prescribed, classical source (Friedrichs 1953, Cook 1961), we express this 
by saying that the source 'dresses' itself with bound photons. But here the source con- 
sists of a prescribed quantum state u,(x) of the electron, and the dress consists of bound 
transverse(!) photons in a coherent state of the Fock space 9". We emphasize that 
Glauber's coherent states (Glauber 1963) are identical with Friedrichs' 'modified 
vacuum states' (Friedrichs 1953), namely the eigenstates of aK in 9". 

It is interesting that, when applied to the 2Sli2-2Pl,, states with due regard for 
their spin degeneracy, these shifts remove the 2S,,,-2PIi, energy degeneracy of the 
Dirac hydrogen atom by an amount which agrees to within 1 %  with the observed 
Lambshift. Such applications of the WW theory will be considered elsewhere. 

Example 4. 

Quite different WWa's of finite or infinite order are obtained if we assume that any 
finite or infinite number of atomic states u,(x), but only few photons, say n = 0 and 
n = 1, will be important. We then get 

d 

dt bsQ 
i--.:(t) = E,a;(t)+ [d3~M*(a,  b ;  rc)ab,(K; t) 

(33) 

where Q is some finite or infinite subset of Qa.  
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This theory is important because, when all atomic states are included, its state space 
%‘I contains all states which also occur in second-order perturbation treatments of 
self-energy effects (cf eg Heitler 1954). The choice of I is thus motivated by the smallness 
of the coupling constant, but we see here that this principle definitely violates physical 
self-consistency. A theory with all atomic states, but only few photons, ‘provides room 
in its state space’ for only a few photons in the final states. It therefore excludes the 
often more probable cascade transitions to the ground state as well as ‘dressing 
processes’ of the type of example 3, which frequently require many photons, but not 
necessarily much energy. It is also not self-consistent to include all one-electron states, 
say of energy greater than about 10’’ electron-positron pair masses, but not to include 
even one single such pair. 

It is one of the most prospective features of the WWa that it provides more or less 
‘natural’ means to avoid such inconsistencies. The conservation of unitarity, though 
only on subspaces of Y: is another feature which favourably distinguishes the WWa 
from perturbation theory. 
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